Java CAS并发原语

在Java并发中,我们最初接触的应该就是synchronized关键字了,但是synchronized属于重量级锁,很多时候会引起性能问题,volatile也是个不错的选择,但是volatile不能保证原子性,只能在某些场合下使用。

对CAS的理解,CAS是一种无锁算法,CAS有3个操作数,内存值V,旧的预期值A,要修改的新值B。当且仅当预期值A和内存值V相同时,将内存值V修改为B,否则什么都不做。CAS比较与交换的伪代码可以表示为:

1
2
3
4
do{   
备份旧数据;
基于旧数据构造新数据;
}while(!CAS( 内存地址,备份的旧数据,新数据 ))

乐观锁与悲观锁#

像synchronized这种独占锁属于悲观锁,它是在假设一定会发生冲突的,那么加锁恰好有用,除此之外,还有乐观锁,乐观锁的含义就是假设没有发生冲突,那么我正好可以进行某项操作,如果要是发生冲突呢,那我就重试直到成功,乐观锁最常见的就是CAS。

我们在读Concurrent包下的类的源码时,发现无论是ReenterLock内部的AQS,还是各种Atomic开头的原子类,内部都应用到了CAS,最常见的就是我们在并发编程时遇到的i++这种情况。传统的方法肯定是在方法上加上synchronized关键字:

1
2
3
4
5
6
public class Test {
public volatile int i;
public synchronized void add() {
i++;
}
}

但是这种方法在性能上可能会差一点,我们还可以使用AtomicInteger,就可以保证i原子的++了。

1
2
3
4
5
6
7
public class Test {
public AtomicInteger i;
public void add() {
i.getAndIncrement();
}
}

我们来看getAndIncrement的内部:

1
2
3
public final int getAndIncrement() {
return unsafe.getAndAddInt(this, valueOffset, 1);
}

再深入到getAndAddInt():

1
2
3
4
5
6
7
public final int getAndAddInt(Object var1, long var2, int var4) {
int var5;
do {
var5 = this.getIntVolatile(var1, var2);
} while(!this.compareAndSwapInt(var1, var2, var5, var5 + var4));
return var5;
}

这里我们见到compareAndSwapInt这个函数,它也是CAS缩写的由来。那么仔细分析下这个函数做了什么呢?
首先我们发现compareAndSwapInt前面的this,那么它属于哪个类呢,我们看上一步getAndAddInt,前面是unsafe。这里我们进入的Unsafe类。这里要对Unsafe类做个说明。结合AtomicInteger的定义来说:

1
2
3
4
5
6
7
8
9
10
11
12
13
public class AtomicInteger extends Number implements java.io.Serializable {
private static final long serialVersionUID = 6214790243416807050L;
// setup to use Unsafe.compareAndSwapInt for updates
private static final Unsafe unsafe = Unsafe.getUnsafe();
private static final long valueOffset;
static {
try {
valueOffset = unsafe.objectFieldOffset
(AtomicInteger.class.getDeclaredField("value"));
} catch (Exception ex) { throw new Error(ex); }
}
private volatile int value;
...

在AtomicInteger数据定义的部分,我们可以看到,其实实际存储的值是放在value中的,除此之外我们还获取了unsafe实例,并且定义了valueOffset。再看到static块,懂类加载过程的都知道,static块的加载发生于类加载的时候,是最先初始化的,这时候我们调用unsafe的objectFieldOffset从Atomic类文件中获取value的偏移量,那么valueOffset其实就是记录value的偏移量的。

再回到上面一个函数getAndAddInt,我们看var5获取的是什么,通过调用unsafe的getIntVolatile(var1, var2),这是个native方法,具体实现到JDK源码里去看了,其实就是获取var1中,var2偏移量处的值。var1就是AtomicInteger,var2就是我们前面提到的valueOffset,这样我们就从内存里获取到现在valueOffset处的值了。

现在重点来了,compareAndSwapInt(var1, var2, var5, var5 + var4)其实换成compareAndSwapInt(obj, offset, expect, update)比较清楚,意思就是如果obj内的value和expect相等,就证明没有其他线程改变过这个变量,那么就更新它为update,如果这一步的CAS没有成功,那就采用自旋的方式继续进行CAS操作,取出乍一看这也是两个步骤了啊,其实在JNI里是借助于一个CPU指令完成的。所以还是原子操作。

CAS底层原理#

CAS底层使用JNI调用C代码实现的,如果你有Hotspot源码,那么在Unsafe.cpp里可以找到它的实现:

1
2
3
4
5
6
static JNINativeMethod methods_15[] = {
//省略一堆代码...
{CC"compareAndSwapInt", CC"("OBJ"J""I""I"")Z", FN_PTR(Unsafe_CompareAndSwapInt)},
{CC"compareAndSwapLong", CC"("OBJ"J""J""J"")Z", FN_PTR(Unsafe_CompareAndSwapLong)},
//省略一堆代码...
};

我们可以看到compareAndSwapInt实现是在Unsafe_CompareAndSwapInt里面,再深入到Unsafe_CompareAndSwapInt:

1
2
3
4
5
6
UNSAFE_ENTRY(jboolean, Unsafe_CompareAndSwapInt(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jint e, jint x))
UnsafeWrapper("Unsafe_CompareAndSwapInt");
oop p = JNIHandles::resolve(obj);
jint* addr = (jint *) index_oop_from_field_offset_long(p, offset);
return (jint)(Atomic::cmpxchg(x, addr, e)) == e;
UNSAFE_END

p是取出的对象,addr是p中offset处的地址,最后调用了Atomic::cmpxchg(x, addr, e), 其中参数x是即将更新的值,参数e是原内存的值。代码中能看到cmpxchg有基于各个平台的实现,这里我选择Linux X86平台下的源码分析:

1
2
3
4
5
6
7
8
inline jint     Atomic::cmpxchg    (jint     exchange_value, volatile jint*     dest, jint     compare_value) {
int mp = os::is_MP();
__asm__ volatile (LOCK_IF_MP(%4) "cmpxchgl %1,(%3)"
: "=a" (exchange_value)
: "r" (exchange_value), "a" (compare_value), "r" (dest), "r" (mp)
: "cc", "memory");
return exchange_value;
}

这是一段小汇编,__asm__说明是ASM汇编,__volatile__禁止编译器优化

1
2
// Adding a lock prefix to an instruction on MP machine
#define LOCK_IF_MP(mp) "cmp $0, " #mp "; je 1f; lock; 1: "

os::is_MP判断当前系统是否为多核系统,如果是就给总线加锁,所以同一芯片上的其他处理器就暂时不能通过总线访问内存,保证了该指令在多处理器环境下的原子性。

在正式解读这段汇编前,我们来了解下嵌入汇编的基本格式:

1
2
3
4
5
asm ( assembler template
: output operands /* optional */
: input operands /* optional */
: list of clobbered registers /* optional */
);
  • template就是cmpxchgl %1,(%3)表示汇编模板
  • output operands表示输出操作数,=a对应eax寄存器
  • input operand 表示输入参数,%1 就是exchange_value, %3是dest, %4就是mp, r表示任意寄存器,a还是eax寄存器
  • list of clobbered registers就是些额外参数,cc表示编译器cmpxchgl的执行将影响到标志寄存器, memory告诉编译器要重新从内存中读取变量的最新值,这点实现了volatile的感觉。

那么表达式其实就是cmpxchgl exchange_value ,dest,我们会发现%2也就是compare_value没有用上,这里就要分析cmpxchgl的语义了。cmpxchgl末尾l表示操作数长度为4,上面已经知道了。cmpxchgl会默认比较eax寄存器的值即compare_value和exchange_value的值,如果相等,就把dest的值赋值给exchange_value,否则,将exchange_value赋值给eax。具体汇编指令可以查看Intel手册CMPXCHG
最终,JDK通过CPU的cmpxchgl指令的支持,实现AtomicInteger的CAS操作的原子性。

CAS 的问题#

ABA问题#

CAS需要在操作值的时候检查下值有没有发生变化,如果没有发生变化则更新,但是如果一个值原来是A,变成了B,又变成了A,那么使用CAS进行检查时会发现它的值没有发生变化,但是实际上却变化了。这就是CAS的ABA问题。

常见的解决思路是使用版本号。在变量前面追加上版本号,每次变量更新的时候把版本号加一,那么A-B-A 就会变成1A-2B-3A。
目前在JDK的atomic包里提供了一个类AtomicStampedReference来解决ABA问题。这个类的compareAndSet方法作用是首先检查当前引用是否等于预期引用,并且当前标志是否等于预期标志,如果全部相等,则以原子方式将该引用和该标志的值设置为给定的更新值。

循环时间长开销大#

上面我们说过如果CAS不成功,则会原地自旋,如果长时间自旋会给CPU带来非常大的执行开销。